(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
not(true) → false
not(false) → true
odd(0) → false
odd(s(x)) → not(odd(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
not(true) → false
not(false) → true
odd(0') → false
odd(s(x)) → not(odd(x))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
not(true) → false
not(false) → true
odd(0') → false
odd(s(x)) → not(odd(x))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
Types:
not :: true:false → true:false
true :: true:false
false :: true:false
odd :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
odd, +'
(6) Obligation:
Innermost TRS:
Rules:
not(
true) →
falsenot(
false) →
trueodd(
0') →
falseodd(
s(
x)) →
not(
odd(
x))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
Types:
not :: true:false → true:false
true :: true:false
false :: true:false
odd :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
odd, +'
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
odd(
gen_0':s3_0(
n5_0)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
odd(gen_0':s3_0(0))
Induction Step:
odd(gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
not(odd(gen_0':s3_0(n5_0))) →IH
not(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
not(
true) →
falsenot(
false) →
trueodd(
0') →
falseodd(
s(
x)) →
not(
odd(
x))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
Types:
not :: true:false → true:false
true :: true:false
false :: true:false
odd :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
odd(gen_0':s3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
+'
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
a),
gen_0':s3_0(
n401_0)) →
gen_0':s3_0(
+(
n401_0,
a)), rt ∈ Ω(1 + n401
0)
Induction Base:
+'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(a)
Induction Step:
+'(gen_0':s3_0(a), gen_0':s3_0(+(n401_0, 1))) →RΩ(1)
s(+'(gen_0':s3_0(a), gen_0':s3_0(n401_0))) →IH
s(gen_0':s3_0(+(a, c402_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
not(
true) →
falsenot(
false) →
trueodd(
0') →
falseodd(
s(
x)) →
not(
odd(
x))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
Types:
not :: true:false → true:false
true :: true:false
false :: true:false
odd :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
odd(gen_0':s3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
+'(gen_0':s3_0(a), gen_0':s3_0(n401_0)) → gen_0':s3_0(+(n401_0, a)), rt ∈ Ω(1 + n4010)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
odd(gen_0':s3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
(14) BOUNDS(n^1, INF)
(15) Obligation:
Innermost TRS:
Rules:
not(
true) →
falsenot(
false) →
trueodd(
0') →
falseodd(
s(
x)) →
not(
odd(
x))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
Types:
not :: true:false → true:false
true :: true:false
false :: true:false
odd :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
odd(gen_0':s3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
+'(gen_0':s3_0(a), gen_0':s3_0(n401_0)) → gen_0':s3_0(+(n401_0, a)), rt ∈ Ω(1 + n4010)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
odd(gen_0':s3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
not(
true) →
falsenot(
false) →
trueodd(
0') →
falseodd(
s(
x)) →
not(
odd(
x))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
Types:
not :: true:false → true:false
true :: true:false
false :: true:false
odd :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
odd(gen_0':s3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
odd(gen_0':s3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
(20) BOUNDS(n^1, INF)